More Gifts
Subgroup 1. n < 100, k < 10.

We use dynamic programming. Let dp[i] be the minimum number of subsegments in a prefix of length ¢,
with dp[1] = 1.

Recalculation for state i: dp[i] = min(dp|i], dp[j] + 1), if the subsegment [j + 1,4] contains no more than ¢
different numbers.

If we recalculate this dynamic from the end, we can check the condition in O(1), maintaining the number
of different numbers in the subsegment. Thus, we get a solution for O((nk)?) or O((nk)?log(nk)).

Subgroup 2. t = 1.

We divide the original array into blocks of consecutive equal numbers. Let the number of blocks be cnt.
Then, the answer will be ent - k if the first block does not match the last one, otherwise (ent — 1) - k + 1.

Proof of the Greedy Solution.

Consider some optimal partition, let it differ from the greedy one. Find the first position where there are
differences. In this case, the length of the subsegment in the optimal partition is less than in the greedy
one. Shift the right boundary of this subsegment to the position in our greedy solution. The partition will
remain correct and the number of subsegments will not increase. By continuing this process, the optimal
partition will turn into the greedy one, and the number of subsegments will not increase. It follows that
the greedy partition is optimal.

Subgroup 3. n < 1000, £ < 1000.

We construct a fully repeated array of size nk. Using a greedy algorithm, we obtain the minimum number
of gifts. Solution for O(nk) or O(nklog(nk)).

Subgroup 4. n < 1500, k < 106.

Consider the following algorithm: from position ¢ in the original array, we greedily collect gifts until the
end of the current stack. Then we will collect from the next stack, as long as it does not increase the
number of subsegments. For each position ¢ in the original array, we will remember the position following
the one where we stopped, as well as the number of subsegments obtained in the process, and call these
values goli] and cntli].

We calculate the arrays go and cnt for O(n?logn) straightforwardly. Now, to calculate the answer, we
introduce a parameter cur, which will indicate the position in the array up to which we optimally divided
the array. We iterate from 1 to k, adding cnt[cur| to the answer on each iteration, and changing cur to
golcur]. The answer calculation takes O(k), adding the pre-calculation, we get O(n?logn + k).

Subgroup 5. k < 106.

We will learn to find the arrays go and ent in O(n). To do this, we will use the two-pointer method to
find the maximum length of a subsegment containing no more than ¢ numbers for position i, which we
will call [en. Calculating the arrays go and cnt from the end of the original array, the recalculation for
position ¢ can be done as follows:

o If i+ len >n — 1, then go[i| = (i + len)%n + 1, where % is the modulo operation, and cnt[i] = 1.

e Otherwise, go[i] = go[i+len+ 1], where % is the modulo operation, and cnt[i] = ent[i+len+1]+1.

Calculating the answer as in subgroup 4, we get a solution for O(n + k) or O(nlogn + k).
Complete Solution.

We optimize the answer calculation. Notice that if £ > n, then when calculating the answer, the value
of cur will take on some values several times. Find the first repetition. Then find the number of steps at
which this repetition occurred, as well as the value added to the answer during this time. By dividing the
remaining number of stacks by the number of steps, we find how many more repetitions will occur, and
process the remaining at the end of the stack separately.

Page 1 of 2



In total, the solution is for O(n) or O(nlogn).

Page 2 of 2



