Best Runner
First, let’s analyze the subgroups where the main idea from the general solution is not used:

Subgroup 2: The first runner will always win: he must move one lane to the left after each lane (as long
as this is possible). This way, he will run the most lanes, as he will have run on the shortest lanes.

Subgroup 3: This can be solved using dynamic programming. dp[i][j] (where i is the current lane of the
runner, and j is the remaining time) equals the maximum number of lanes that can be run starting from
such a situation.

Subgroup 5: The runner who starts on the lane with the minimum length always wins, as he can run
the maximum number of times on the shortest lane.

For the other subgroups, we need to understand what the optimal route of the runner will look like. Let’s
say he starts on lane .

e He must finish on the shortest lane he has been on (let’s denote it as j). If he stayed on the shortest
lane and ran on it until the end of the time, he would have run at least as many lanes as in any
other scenario.

e He must also transition from ¢ to j as quickly as possible, and then only run on j. This way, he will
run the maximum number of lanes among all scenarios.

Let’s say we have a runner starting on lane ¢ and ending on lane j. We define the number of lanes he will

run. Without loss of generality, let ¢ < j. Then he will spend a; + a;j+1 + ... + a;j—1 time to reach lane j,
—(a;+aip1+...4+a;_1)
aj
(if the time from lane i to lane j does not exceed T). If we maintain prefix sums of the array a, we can

compute the number of lanes in O(1).

and then he will run on j for the remaining time. Thus, he will run 5 — i 4+ LT | lanes

This is enough to solve subgroup 1: for each starting position, iterate through all ending positions and
find the maximum number of lanes.

Subgroup 4: here we need to iterate only through those lanes that are strictly shorter than all lanes
between the starting lane and it as ending positions. Since the lengths of the lanes do not exceed 20, for
each starting position, we will consider no more than 20 ending lanes to the left and right. To quickly
find the nearest lane to the left (or right) that is shorter than the current one, we can precompute them
in advance.

Subgroup 6: we just need to apply a small trick. We will instead find for each ending position j the
runner who will run the maximum number of lanes and finish on lane j. It can be shown that this will
either be the nearest runner to the left of the lane, or the nearest runner to the right (or a runner starting
on this lane, if such exists) — other runners will take more time to reach j (if j is the optimal ending
position). Thus, we need to iterate through no more than 2 starting lanes for each ending lane.

Page 1 of 1



