
Открытая олимпиада школьников по программированию 2023/24, все задачи
Россия, Москва, 7-9 марта, 2024

Разбор задачи «Draw Polygon Lines»
For a permutation p, let’s define a(p) as the number of acute angles among the angles ∠Api−1ApiApi+1 .
task = 1
You need to find a permutation p such that a(p) = n− 2.
It is possible to iterate through all permutations in O(n!).
For subtasks with random points, optimization approaches can be used (we will discuss later).
The complete solution for this case is as follows:

• Let’s build the permutation, with the first point being A1.

• At each iteration, we will select the point Api+1 (from the remaining points) such that the length of
the segment ApiApi+1 is maximal, i.e., the farthest point.

• Notice that ∠ApiApi+1Api+2 is acute because ApiApi+1 > ApiApi+2 .

• We obtain a permutation such that a(p) = n− 2, which is the maximum.

Optimization Ideas
Optimization works well for subtasks with random points!
We need to minimize the functional f(p) = −a(p) (if task = 1) or f(p) = |a(p)− k| (if task = 3, 4).
For example, we can swap two random elements of the permutation and recalculate the functional in

O(1). Then, using local optimization or simulated annealing, we can find the answer.
To cover all values of k, we can use “almost discrete continuity”. When locally changing the function,

it changes by 6 6. Therefore, we can minimize the function and then, conversely, maximize it. Thus, if
we remember the answers for all obtained values, we will cover all necessary k values quickly.

xi < xi+1, yi < yi+1

The main idea about monotonicity:

• Suppose we have three points A1(x1, y1), A2(x2, y2), A3(x3, y3), such that either x1 < x2 < x3 or
x1 > x2 > x3, and either y1 < y2 < y3 or y1 > y2 > y3.

• Then the angle ∠A1A2A3 is always obtuse, and the angles ∠A2A1A3 and ∠A2A3A1 are always
acute.

Then the solution works as follows:

• For maximization, we simply consider the permutation 1, n, 2, n− 1, 3, n− 2,

• To obtain a specific k, the following permutations work:

[1, k + 2, 2, k + 1, 3, k, . . .] , [k + 3, k + 4, . . . , n]

or

[k + 2, 1, k + 1, 2, k, 3, . . .] , [k + 3, k + 4, . . . , n]

Monotonic Subsequences

• Any permutation of length n 6 2x2 can be divided into 6 2x increasing or decreasing subsequences.
Algorithm:

– Find the longest increasing subsequence of length k in O(n log n).

– If k 6 2x, then we automatically obtain a division into k increasing subsequences (for example,
using the binary search algorithm).

– If k > 2x, then we remove this increasing subsequence and proceed to a permutation of length
6 2x2 − 2x− 1 6 (x− 1)2.

Страница 1 из 9

Открытая олимпиада школьников по программированию 2023/24, все задачи
Россия, Москва, 7-9 марта, 2024

• The total construction time is O(n
√
n log n).

task = 2

• We like monotonic subsequences — we can create many obtuse angles.

• We find a division of the set of points into 6
√
2n 6 400 monotonic subsequences.

• It is possible to connect the subsequences, and the number of acute angles will be 6 2
√
2n.

task = 3

• In monotonic subsequences, we can obtain any number of acute angles.

• We want to connect the broken lines between subsequences. Problems will occur at the boundaries
(unpredictable change in the number of acute angles).

• If we fix the first, second, last, and penultimate elements in each subsequence, then when connecting,
the number of acute angles will be predictable.

• Now we can obtain any k, but with a certain parity (due to the fixing).

• If we try several random options, we will cover all parities.

task = 4

• We create similar examples.

• For all of them together, we can carefully calculate the hashes.

• The previously described solution immediately provides any k ∈ [5
√
2n, n− 5

√
2n].

• It is possible to improve the constant to 2 carefully by analyzing the cases of connection.

• The overall complexity is O(n
√
n log n+ qn).

Разбор задачи «Evidence Board»
General note: Let’s rephrase the problem. Instead of “building“ the tree from scratch, we will do the

opposite and remove edges from the tree. After that, we will reverse our obtained answer. In the tutorial
we will solve the problem in the format of “removing the tree“. The list of stickers in the tree vertex will
be called a stack, and the top of the stack will always be the sticker that should be removed first.

• Subtask №1

This subtask is solved by full bruteforce. There are (n − 1)! possible orders of edge removal. Each
order is trivially checked in O(n).
Asymptotics: O(n!)

• Subtask №2

Bamboo.

Dynamic programming on the prefix. dp[v][i] a boolean value: whether it is possible to remove the
bamboo from the vertices from 1 to v, but if the stack for vertex v contains a single element cv,i
(i ∈ {0, 1}).
Dynamic programming base: dp[1][0] = dp[1][1] = true

Recalculation of dynamic programming: we need to consider all four variants with which elements of
the stacks the edge between v and v−1 will be removed, if this edge can be removed, we recalculate
through dp[v − 1][i].

Страница 2 из 9

Открытая олимпиада школьников по программированию 2023/24, все задачи
Россия, Москва, 7-9 марта, 2024

The answer exists if dp[n][0] = true, otherwise no.

To restore the answer, for each edge, we need to remember with which i1, i2 it was removed. First
remove all edges of the form i1 = 0, i2 = 0, then i1 = 1, i2 = 0, i1 = 0, i2 = 1 and i1 = 1, i2 = 1.

Asymptotics: O(n)

• Subtask №3

Star.

Go through the leaves from 2 to n. Let’s say we are currently considering leaf v. In the array c1, find
the minimum number > wv − cv,1. It is easy to understand that it is optimal to remove the edge
leading to v with this number. After that, remove the found number from c1. In the implementation,
we maintain c1 in std::multiset and use the lower_bound method.

The required order of edge removal corresponds to the original order of numbers in c1.

Asymptotics: O(n log n)

• Subtask №4

Two stars, bases connected by an edge.

Solve two stars similarly to group 4. After that, there will be one number left in both bases. If they
allow removing the edge between the bases, the answer is Yes, otherwise No. The suitable order of
edge removal: all edges of the first star before the base vertex, all edges of the second star before the
base vertex, the edge between the bases, all edges of the first star after the base vertex, all edges of
the second star after the base vertex.

Asymptotics: O(n log n)

• Subtask №5

The values of the numbers in the vertices are increasing.

If at some point an edge can be removed, then it can always be removed later. Therefore, at any
time, it is permissible to remove any possible edge. The solution will be a greedy algorithm: we look
for any edge that can be removed and remove it from the tree, repeating n − 1 times. If at some
point there are no edges ready for removal, the answer is No.

Asymptotics: O(n2)

• Subtask №6

Note that for any test, the following fact is true: if we reverse all the stacks of the original test and
call it a new test, then if there is no answer for the original test, there is no answer for the new one.
And if the answer exists, then the answer to the new test will be the reversed answer for the original
test. From this observation, the solution of group 6 directly follows from the solution of group 5: we
need to reverse all the arrays, as well as the final answer.

Asymptotics: O(n2)

• Full solution

The full solution is based on one key idea: “For any way to assign a pair of stack elements to each
edge of adjacent vertices (without repetitions), there exists an edge removal order such that each
edge will be removed together with its assigned elements“.

Proof of the key idea: Consider any assignment. Each vertex points to one adjacent edge to which
the top element of the stack is assigned, as “half ready for removal“. Since there are n vertices and
n− 1 edges, there will be an edge to which both adjacent vertices point. This edge can be removed.
After removing it, the tree splits into two other trees, and the same reasoning applies to them.

After the key idea, the problem split into two parts.

1. Build any correct assignment of edges to stack elements

Страница 3 из 9

Открытая олимпиада школьников по программированию 2023/24, все задачи
Россия, Москва, 7-9 марта, 2024

2. Restore the order of edge removal

To build the assignment, we use a greedy algorithm similar to the solution of group 3. We write
down the order of vertices of any tree traversal. We iterate through the vertices in the reverse order
of traversal (from the leaves). Let the currently iterated vertex be v. Then we assign the minimum
suitable number (> wv − cv) from the parent vertex to the only remaining number in the stack of
vertex v.

For the implementation, we store a std::multiset of numbers in each vertex. We use lower_bound
and erase in it.

Restoration: for each edge, we maintain how ready it is for removal (0/1/2). The edges ready for
removal are stored in the stack. Iteratively, we take any edge from the stack, remove it, and increase
the “readiness for removal“ of no more than 2 other edges. If any of them becomes ready for removal,
we add it to the stack.

Final asymptotics: O(n log n)

Разбор задачи «More Gifts»
Subgroup 1. n 6 100, k 6 10.
We use dynamic programming. Let dp[i] be the minimum number of subsegments in a prefix of length

i, with dp[1] = 1.
Recalculation for state i: dp[i] = min(dp[i], dp[j] + 1), if the subsegment [j + 1, i] contains no more

than t different numbers.
If we recalculate this dynamic from the end, we can check the condition in O(1), maintaining the

number of different numbers in the subsegment. Thus, we get a solution for O((nk)2) or O((nk)2 log(nk)).
Subgroup 2. t = 1.
We divide the original array into blocks of consecutive equal numbers. Let the number of blocks be

cnt. Then, the answer will be cnt ·k if the first block does not match the last one, otherwise (cnt−1) ·k+1.
Proof of the Greedy Solution.
Consider some optimal partition, let it differ from the greedy one. Find the first position where there

are differences. In this case, the length of the subsegment in the optimal partition is less than in the greedy
one. Shift the right boundary of this subsegment to the position in our greedy solution. The partition will
remain correct and the number of subsegments will not increase. By continuing this process, the optimal
partition will turn into the greedy one, and the number of subsegments will not increase. It follows that
the greedy partition is optimal.

Subgroup 3. n 6 1000, k 6 1000.
We construct a fully repeated array of size nk. Using a greedy algorithm, we obtain the minimum

number of gifts. Solution for O(nk) or O(nk log(nk)).
Subgroup 4. n 6 1500, k 6 106.
Consider the following algorithm: from position i in the original array, we greedily collect gifts until

the end of the current stack. Then we will collect from the next stack, as long as it does not increase the
number of subsegments. For each position i in the original array, we will remember the position following
the one where we stopped, as well as the number of subsegments obtained in the process, and call these
values go[i] and cnt[i].

We calculate the arrays go and cnt for O(n2 log n) straightforwardly. Now, to calculate the answer, we
introduce a parameter cur, which will indicate the position in the array up to which we optimally divided
the array. We iterate from 1 to k, adding cnt[cur] to the answer on each iteration, and changing cur to
go[cur]. The answer calculation takes O(k), adding the pre-calculation, we get O(n2 log n+ k).

Subgroup 5. k 6 106.
We will learn to find the arrays go and cnt in O(n). To do this, we will use the two-pointer method

to find the maximum length of a subsegment containing no more than t numbers for position i, which we
will call len. Calculating the arrays go and cnt from the end of the original array, the recalculation for
position i can be done as follows:

Страница 4 из 9

Открытая олимпиада школьников по программированию 2023/24, все задачи
Россия, Москва, 7-9 марта, 2024

• If i+ len > n− 1, then go[i] = (i+ len)%n+ 1, where % is the modulo operation, and cnt[i] = 1.

• Otherwise, go[i] = go[i+ len+1], where % is the modulo operation, and cnt[i] = cnt[i+ len+1]+1.

Calculating the answer as in subgroup 4, we get a solution for O(n+ k) or O(n log n+ k).
Complete Solution.
We optimize the answer calculation. Notice that if k > n, then when calculating the answer, the value

of cur will take on some values several times. Find the first repetition. Then find the number of steps at
which this repetition occurred, as well as the value added to the answer during this time. By dividing the
remaining number of stacks by the number of steps, we find how many more repetitions will occur, and
process the remaining at the end of the stack separately.

In total, the solution is for O(n) or O(n log n).

Разбор задачи «Big Persimmon»
To begin with, let’s notice two useful things:

• Maximizing the sum of taken elements is the same as maximizing the difference between what you
take and what your opponent takes.

• As long as there is at least one piece left on the table, both people have eaten the same amount, so
the difference between them is zero.

To start solving the problem in O(n2 ·max
i

(wi)), we will use dynamic programming:

Let’s denote dp[l][r][dif] as the difference between the amount the first person takes and the amount
the second person takes, if they were to play on the segment of elements [l, r], with the first person starting
to eat after dif seconds from the second person (where dif can be negative).

The base case for the dynamic programming is: dp[i][i-1][dif] = 0, and the answer lies in dp[0][n-1][0].
The sign of dif determines who will make the decision about which piece to take first. Thus, the

transitions are as follows:
For dif 6 0: dp[l][r][dif] = max of

• dp[l + 1][r][dif + w[l]] + w[l]

• dp[l][r − 1][dif + w[r]] + w[r]

For dif > 0: dp[l][r][dif] = min of

• dp[l + 1][r][dif − w[l]]− w[l]

• dp[l][r − 1][dif − w[r]]− w[r]

In this dynamic programming, |dif| 6 max
i

(wi), so there are a total of O(n2 ·max
i

(wi)) states and two
transitions from each.

To solve subgroups with the restriction wi+1 6 2 · wi, we will prove the following fact: in such
constraints, for any achievable state (l, r, dif), it holds that |dif| 6 wr+1 (exception: if r = n − 1,
then |dif| 6 wn−2).

To prove this, note that in any transition, dif changes towards zero, so its absolute value either
decreases or becomes no more than wi (where wi is the last taken piece). Thus, in transitions [l, r] →
[l+1, r], the relationship is preserved in any case, and in transitions [l, r]→ [l, r-1], it is preserved because
wr+1 6 2 · wr.

Therefore, for each l, there are only O(
n−1∑
i=0

wi) = O(W) achievable pairs r, dif, so there are a total of

O(n ·W) states and two transitions from each.
Now, to solve the full problem, we will change the transitions in the dynamic programming to preserve

the relationship |dif| 6 wr+1.
To do this, note that if one person took several pieces before passing the turn to the opponent, they

could always do so by first taking the smallest pieces and then the largest ones. Therefore, we will keep

Страница 5 из 9

Открытая олимпиада школьников по программированию 2023/24, все задачи
Россия, Москва, 7-9 марта, 2024

the transitions [l, r] → [l+1, r] as they preserve the invariant, and instead of transitions [l, r] → [l, r-1],
we will add transitions [l, r, dif] → [l, r’, dif’], meaning that the person takes the largest elements so that
the turn passes to the opponent, or the game ends.

These transitions preserve the invariant |dif| 6 wr+1, so in this dynamic programming, there are
O(n ·W) states and still two transitions from each.

Also note that the values of r′ depend only on r and dif, but not on l, so they can be computed in
O(W · log(n)).

The resulting solution works in O(n ·W), which is sufficient to pass all tests.

Разбор задачи «Parallel Universes»
Let’s call the graph that needs to be made connected the first one, and the graph whose connectivity

cannot be violated the second one.
Suppose the second graph contains an edge (v, u) such that the vertices v and u are in the same

connected component of the first graph. Then consider any vertex a from a different component of the
first graph. Notice that one of the operations (v, a) and (u, a) does not violate the connectivity of the
second graph. Thus, it is possible to perform one operation to merge the component of vertex a with the
component of vertices v and u, which solves the problem.

Now, notice that if there exists a pair of vertices v and u such that there is no edge (v, u) in both
graphs, then it is possible to perform an operation with this pair of vertices, after which the problem
reduces to the previous case.

If such an edge is not found, then all connected components of the first graph are cliques, and the
second graph contains all edges that are not in the first graph.

Now, let’s select any connected component of the first graph, the size of which is at least 2 (if there
is no such component, then perform an operation with any pair of vertices, after which such a connected
component will appear). In this connected component, select arbitrary vertices a and b. In addition, from
all other connected components of the first graph, select one vertex. Let’s call them v1, v2, . . . , vk.

Notice that if the first graph contains at least three connected components or each connected
component has a size of at least 2, then the following sequence of operations will work:
(a, v1), (b, v2), (b, v3), . . . , (b, vk).

If this is not the case, then the first graph contains an isolated vertex c, while all other vertices form
a clique. In this case, the second graph is a star. In this case, if n = 3, there is no answer, otherwise,
any pair of vertices a and b different from c can be chosen, and two operations (a, b) and (a, c) can be
performed.

This allows solving the problem in O(n+m1+m2) or O ((n+m1 +m2) log(m1 +m2)) depending on
the implementation.

Разбор задачи «Three Arrays»
Subgroup 1. n 6 15
We will iterate through all possible operations, and choose the appropriate answer among them. The

time complexity is O(2n · n).
Subgroups 3, 5. Di = 0
The values of Ai, Bi can only change during the minimum operation.
We will iterate through the final value An = c. This can be any of the values Li 6 a0 or a0 itself.
The value of Bn is determined as the minimum of b0 and the values Ri such that Li < c.
We obtain the solution in O(n2) or O(n log n) depending on the method of calculating the value of

Bn.
Full solution.
Notice that the final values have the form An = Lp + Dp+1 + Dp+2 + . . . + Dn and

Bn = Rq +Dq+1 +Dq+2 + . . .+Dn for some 0 6 p, q 6 n.
Replace Li with Li +

∑n
j=i+1Dj , Ri with Ri +

∑n
j=i+1Dj .

We reduce the problem to the case Di = 0.
We obtain solutions of different complexities from O(n3) to O(n log n).

Страница 6 из 9

Открытая олимпиада школьников по программированию 2023/24, все задачи
Россия, Москва, 7-9 марта, 2024

Разбор задачи «Burenka and Pether»
Subgroup 1.
n, q 6 100. In this subgroup, there are small constraints on n, q, so it is possible to construct a graph

of jumps and independently find the shortest path for each query using breadth-first search. O(n2q)
Structure of our graph
Note. Let’s understand what our graph looks like, namely: let’s show that from vertex u edges are

drawn to all vertices t of some segment [u, ru], such that at > au.
Proof. To do this, let’s remove the restriction ai < aj for the jump from i to j (now the second end of

the jump can be any, the main thing is that an interesting sequence of intermediate vertices is found). If
with such jumps we can jump to some subsegment of vertices, then with the original, the only additional
restriction will be ai < aj , which is what we need. Let there be a jump u→ v. Let’s show that then there
is a jump u→ v − 1. We find the first t > v. We show that from v we can jump to t− 1. In vertex v we
get through some sequence of intermediate vertices. Let the last intermediate vertex be t. Then v− t 6 d,
so either t = v − 1, or the sequence can be used to come to vertex v − 1.

Finding segments.
Now let’s learn to find ri for all vertices. We will iterate over ai in descending order and maintain

the subsegments of "activated"elements in the DSU. When a new element is "activated it may need
to be combined with the components of the neighbors in the DSU. We will also maintain a set of
ends of "long"subsegments of length > d. To find our right boundary based on this information, we
need to find the end of the "long"subsegment closest to the right of i + d (let it be e), and then set
ri := max(i + 1, e − sze + 1) + d, where sze is the size of the subsegment with the end at e. This
recalculation is correct, because all not yet activated elements are less than ai, so we can jump over them
without restrictions, and the only obstacle on our way will be the "long"subsegment of elements > ai.

Subgroup 2.
n 6 1000. Fix the second vertex of the query. We will iterate over the vertices in order of decreasing

identifier. To update the distance from the current iteration vertex u to the fixed vertex v, we just need
to find the minimum on some segment. This can be easily done using a segment tree. O(n2 log n+ q).

Subgroup 3.
an = n, vi = n. It’s time to make one of the main observations in the problem.
Claim. Let (u, v) be a query for which we want to find the answer, and av = n. Then from u we need

to jump to the largest number on the segment [u, ru].
Proof. Let’s assume that the maximum on the subsegment is x, and instead of it we jumped to y.

After that, we made some number of jumps. Let’s consider the first moment when we reached q > x:
y → t1 → . . . → q. If q = x, then indeed it would be more profitable to just jump to q. Otherwise, if
posy < posx, then in q we can get there using some suffix of the path y → t1 → . . . → q (posx is the
position of the vertex with value x in the array). If posy > posx, then there is a path u→ g1 . . .→ gk → y.
We can take a suffix of this path, and then combine it with the path y → t1 → . . . → q to get the path
x → gi → . . . → gj → y → t1 → . . . → q, that is, there is a jump from x to q. This means that it is at
least as profitable to jump to q as to y.

This interesting fact allows us to build a tree with all paths being the shortest from u to v. The
jumps can be easily found using a segment tree. The queries can be answered using binary lifts or dfs.
O((n+ q) log n)

Subgroups 4, 5.
It is noted that all the above arguments are true even for av 6= n with the only difference that in this

case there are no vertices with identifiers greater than av — we definitely cannot reach them from av. This
is formulated as a statement, but in fact we have already proved it.

Claim. Let (u, v) be a query. Then from u we need to jump to the largest number x on the segment
[u, ru] such that x 6 av.

Therefore, in this subgroup, it is sufficient to build a single tree, binary lifts on it, and easily answer
all queries O((n+ q) log n).

Subgroups 6, 7.
We will continue to develop our idea: we know that there are not many jumps, so we can simply

iterate over the queries in ascending order of vi and maintain a segment tree on the maximum. Then,

Страница 7 из 9

Открытая олимпиада школьников по программированию 2023/24, все задачи
Россия, Москва, 7-9 марта, 2024

when answering a query, we just need to find the maximum on some subsegment no more than ans times.
O(n log n+ q · ans · log n).

Subgroup 8.
This subgroup is perhaps the first hint of the existence of a solution to the problem in

O((n + q)polylog(n, q)). All this time we tried to jump to the largest number to reduce the distance.
However, in this subgroup, the distance should not be the shortest.

Claim. Let (u, v) be a query and the distance is not important. Then it is possible to jump from u
to the smallest number greater than au on the segment [u, ru] or to vertex v.

Proof. Let’s assume that from u it is not possible to reach v in one jump, and there was a path
u → t1 → . . . → v. We will show that after jumping from u to the smallest number greater than au on
[u, ru] (let it be vertex p), it is still possible to find such a path. We find the first t > p. We show that
from p it is possible to reach t− 1. In t we got from some sequence of intermediate vertices. Let the last
intermediate vertex be t. Then v − t 6 d, so either t = v − 1, or the sequence can be used to come to
vertex v − 1.

After changing all queries intersecting the cut in this way, we reduce the problem to two independent
ones on the halves. It is not difficult to implement the processing of such queries in O(q log n) at each
recursion level. The final asymptotic complexity of the entire solution will be O((n+ q) log2 n) due to the
log n layers of recursion from "divide and conquer".

Subgroup 9.
Of all the previous subgroups, it becomes clear that the values of the numbers play a more important

role than their indices. Let’s consider ai in descending order of values. We will divide them into blocks
of size

√
n. To answer queries of the form (u, i), we need to jump in the tree using binary lifts, and each

such jump is optimal if it leads to a number 6 ai as proven earlier. Therefore, when answering a query,
we need to use binary lifts no more than

√
n times (we will jump to the leftmost element from which

there is an edge in the tree to a number greater than ai, and then we will jump exactly 1 time using the
segment tree. We need to do this no more than

√
n times, because the number of different "bad"elements

to which we can jump in binary lifts is no more than the number of elements in our block

Разбор задачи «Almost Certainly»
Subgroup 1.
For each prefix, let’s iterate through pairs of numbers that will differ. After that, we will remove them

from the arrays and count how many operations are needed to make the arrays equal. The number of
operations is equal to the sum of elements in the first array minus the sum of elements in the second
array. And they can only be equalized if for each i it holds that ai > bi. This solution works in O(n4).

Subgroup 2.
Let’s improve the solution of the previous subgroup. We want to remove one element from both arrays

so that the difference between them is as large as possible. Let’s sort both prefixes. Notice that if we can
remove ai and bj , then we can also remove ai−1 and bj , as well as ai and bj+1. Then we don’t need to
iterate through O(n2) pairs for removal, but we can iterate through the elements of the first array, and
find the element of the second array by moving a pointer. This solution works in O(n3).

Subgroup 3.
Let’s further improve the solution of the previous subgroup. We need to check the condition ai > bi

faster. To do this, we need to notice that the bi element is compared either with ai or with ai+1. Moreover,
both prefixes will be divided into O(1) segments, in which comparisons of one of two types need to be
made. Let’s precalculate with prefix sums whether the comparisons of each type are satisfied, after which
the correctness check can be performed in O(1). This solution works in O(n2 log n).

Ideas for the complete solution.
Let’s look at the two arrays as a set of segments [bi, ai]. Notice that it is never beneficial for the

final answer to have ai < bi. Then let’s see what the final answer will look like. Remove all indices for
which ai = bi. Sort the remaining numbers in ascending order of ai, then a1 6 a2 6 . . . 6 an and
b1 < a1, b2 < a2, . . . bn < an. It is easy to understand that we need to remove an and b1.

What conditions should the segments satisfy so that after removing an and b1 everything is valid?
b2 6 a1, b3 6 a2, . . . , bn 6 an−1. If we talk about this in terms of segments, this means that they all form

Страница 8 из 9

Открытая олимпиада школьников по программированию 2023/24, все задачи
Россия, Москва, 7-9 марта, 2024

a connected component. Then the answer is the sum of the lengths of the segments minus the length in
coordinates of the longest component.

Subgroup 4-5.
Using this, it can be understood that the answer in subgroup 4 is equal to the sum of the lengths of

the segments minus the length of the longest segment. For the fifth group, it is necessary to maintain the
current component, and when possible, expand it and remember the longest component before that.

Complete solution.
In the implementation of the complete solution, let’s maintain the current segment components. When

moving to a new prefix, we need to be able to merge these components if they intersect with the new
segment. All this can be easily maintained in std::set. The time complexity of the solution is O(n log n).

Страница 9 из 9

