
Problem A. Alice, Bob, and two arrays.
Let’s write both arrays explicitly (we will get rid of the representation of arrays as segments). In dp[x][y],
we will store the winning status of the game if we have removed the first x characters from a and the first
y characters from b.

We will iterate over the character that the first player will place and recalculate dp. This solution works
in O(NMk).

Now we need to eliminate the iteration over the new character. We will iterate in decreasing order, first x,
then y. Notice that when we decrease y by 1, only the transitions for one color change, so we can simply
maintain the count of colors that have transitions to losing positions. This allows us to obtain a solution
in O(NM).

We will number the indices of the arrays starting from one.

Notice that if we made a move, we will end up in position (x, y), where ax = by. Let’s calculate dp only
for such positions.

We will fix the segment of identical characters that contains x, and the segment of identical characters
that contains y. Let these segments be [lx, rx] and [ly, ry]. Both of these segments consist of identical
characters, which we will call t.

We want to find dp for all pairs (x, y), where x lies in the segment [lx, rx], and y lies in the segment
[ly, ry]. Notice that for all these pairs, transitions by characters other than t lead to the same positions.
If among these transitions there is a losing position, then all positions of interest to us are winning, as
there is a transition from all of them to a losing position.

Otherwise, if there is no transition to a losing position, then there is no point in transitioning by characters
other than t. At the same time, we can freely make transitions by character t until we find ourselves in a
new block (i.e., until we exit the segments [lx, rx], [ly, ry]).

The last observation is that if we transition by a new character (i.e., not the one we are currently on), we
will end up at the beginning of a block. That is, if we find ourselves in position (x′, y′), then x′ is at the
beginning of the segment of identical characters, and y′ is at the beginning of the segment of identical
characters. Therefore, let’s store dp only for such positions (i.e., those that are at the beginning of a
block).

1. Using these observations, we will proceed as follows.

2. We will store dp only for positions at the beginnings of blocks.

3. We will calculate dp for these positions by iterating from the end to the beginning.

4. To find the answer for other (x, y), we will iterate over transitions by "other"characters.

5. If there is a transition to a losing position, then the position (x, y) is winning.

6. Otherwise, we transition by character ax until we find ourselves in a new block, then we return to
step 4.

This works in O(n3k).

Using the same optimization as for the solution in O(NM), we can eliminate the iteration over the
character and obtain a solution in O(n3).

A solution in O(n3) with proper optimization can already score 100 points, but the authors have a solution
in O(n2 log). Let’s explain the general idea of the solution.

Consider all pairs (x, y) with color t. If we only consider transitions by character t, then all pairs will break
into "diagonals,"so that when transitioning by character t, we move to the next pair on the diagonal.

We want to be able to jump along the diagonal for each character until we find ourselves in a block from
which there is a transition to a losing position (a transition by another character). To do this, we will

Page 1 of 10



simply store the last pair on this diagonal from which there is a transition to a losing position by another
character.

This can be done implicitly using a data structure in O(n2 log), however, such a solution has too large a
constant.

Notice that the number of diagonals of interest to us is O(nm + q), so we can simply compress the
coordinates and write a data structure from the bottom up; such a solution will score 100 points.

Problem B. The arithmetic exercise
Subgroup 1.

Let all xi be equal to x. In the first subgroup, it is proposed to apply changes to the zero elements of the
array at each step, if possible. If there are no zero cells, we will apply changes to the very last element of
the array. Then the last cell will alternate between the values x,−x, x, ...
Subgroup 2.

There are 2m different ways to make a sequence of changes, as each of the m operations can be applied
either to the first or the second element a. We will enumerate all possible sequences of changes and
calculate the sum after their application. Among all such sums, we will take the maximum. This solution
works in O(m · 2m).

Subgroup 3.

We will use dynamic programming. Let dp[pref ][i][j] = true/false — can we process the first pref
changes so that a1 = i, a2 = j holds. Note that i and j can be negative. It is clear that a1 and a2 cannot
exceed the absolute value of the sum of the values xi. The sum of all xi does not exceed 10m, so we can
store values in the range from −500 to 500.

Subgroup 4.

We will improve the dynamics from the previous group. Notice that for a fixed value of a1 on the prefix,
it makes sense to recalculate only through the minimum or maximum available a2. Therefore, we will
store the explicit value of only one of the elements of the array. We will introduce dpmin[pref ][i] and
dpmax[pref ][i], which store the minimum and maximum achievable value of a2 on the prefix if a1 = i.

Note.

Let’s make a remark that will help us significantly advance towards the solution. It is clear that each
element of the sequence xi will enter the final sum either with a «+» sign or with a «-» sign. Let’s divide
all m elements into n sequences, depending on which position of the array a the change was applied to.
Some of the sequences may be empty. In each sequence, the signs of the elements alternate, and the last
element always has a "+"sign. Therefore, if we replace the signs with +1 and −1 respectively, the sum on
each suffix of such arrays will be either 1 or 0. We will combine all sequences back into one and look at
the sum of the signs on an arbitrary suffix. It will be in the range [0;n]. Now we can use this as a criterion
to check the correctness of the sequence of signs.

Subgroup 5.

We will iterate over the sign for each xi and check that the described criterion holds for each suffix. The
solution works in O(m · 2m).

Subgroup 6 and 7.

We will again use dynamic programming. Let dp[i][j] be the maximum sum that can be obtained on suffix
i, if the current balance of signs equals j. Then dp[i][j] = max(dp[i+ 1][j − 1] + xi, dp[i+ 1][j + 1]− xi).
This solution works in O(nm).

Subgroup 8.

In this subgroup, it is proposed to act greedily, adhering to the balance criterion. For example, we can
go from the end of the sequence xi. At each step, we will try to take a new element and, if necessary,
discard some element that was taken earlier. Since there are at most two different values, it makes sense

Page 2 of 10



to discard only the minimum. We will maintain a queue of minima that have been taken with a "+"sign
and that can still be discarded.

Subgroup 9 and 10.

There are several alternative approaches. Let’s consider a few of them.

1. We will improve the solution for the previous subgroup. We will go from the end, storing the current
arrangement of signs for the elements of the suffix. In the segment tree, we will maintain elements for
which we can change the sign to the opposite. When we move to a new element, we try to assign it a «+»
sign (if this is not possible, we change the sign of the minimum element with a «+» sign for which this
can be done) and see how the sum changes as a result of this action. Similarly, we try to assign a «-» sign
and see how the sum changes. Among the two options, we choose the one that yields the highest sum.

2. We will sort the sequence xi in descending order of absolute value. We will go through the sorted values
and at each step try to assign the desired sign to the element (if the number is positive — «+» else «-»),
if possible. Otherwise, we will assign the sign that we are forced to assign. To understand whether we can
assign a particular sign, we will maintain a segment tree, at each position of which the current balance
of the corresponding suffix is stored. If we want to assign the next sign, we need to look at the minimum
and maximum balance that is already achieved before it and check whether the remaining signs can be
arranged so that the balance criterion is not violated.

3. Let’s recall the solution for subgroups 6 and 7, which uses dynamic programming. Notice that the
function is convex separately for the two parities, so we can use the slope trick.

Problem C. Dreaming is not harmful
First, let’s make a general remark that will help us in solving all the subtasks. Consider the order in which
the vertices will be removed in the original tree, and for simplicity, we will call it the removal order.

Let’s consider an arbitrary vertex v and denote by Sv the set of vertices that come before v in the removal
order. Now, let’s define the optimal vertex for nullification. Note that it is pointless to nullify a vertex
on the path from v to the root, as this can only worsen the position of v in the removal order. When
nullifying a vertex c, which is not on the path to the root, the position of v in the removal order will
decrease by the number of vertices from Sv in the subtree of vertex c.

Thus, we need to find a subtree that does not contain vertex v, with the maximum number of vertices
that come before v in the removal order.

In the future, when we refer to the sum in the subtree, we will mean the number of vertices from Sv in
that subtree.

• Subtask 1. No more than two bamboos (10 points)
In this subtask, the tree consists of no more than two bamboos hanging from the root. In this case,
the removal order can be found using the two-pointer method. The optimal vertex for nullification
is the root of one of the bamboos. To answer the queries, it is sufficient to traverse the removal order
and maintain the sum in both bamboos.

• Subtask 2. Arbitrary number of bamboos (6 points)
The solution is similar to subtask 1. To find the removal order, we need to efficiently merge several
lists, which can be done using a data structure, such as a priority queue or a set. Now, while
traversing the removal order, we will maintain the sum in each bamboo and additionally track two
bamboos with the maximum sum. To answer a query, we will choose the best one that does not
contain the query vertex.

Now we will learn to simulate the process in the general case. We will maintain a set of the root’s children
in a data structure. In the next iteration, we will remove the vertex with the maximum value from it and
add its children. Depending on the chosen data structure, the asymptotic complexity will be O(n log n)
or O(n2). A priority queue or a set would be suitable for an efficient implementation.

Page 3 of 10



• Subtask 3. Any simulation (8 points)
In this subtask, it is required to write any correct simulation. To answer a query, we will iterate over
the vertex for nullification and run the simulation. We will obtain a solution no worse than O(n4).

• Subtask 4. O(n2 log n) (13 points)
We will iterate over the vertex for nullification, run the simulation in O(n log n), and update the
answer for each vertex with its number in the resulting removal order.

• Subtask 5. O(n log n+ nq) (11 points)
We will go through the removal order and maintain a set of visited vertices. To answer a query, we
will calculate the sums in the subtrees and choose the maximum that does not contain the query
vertex.

• Subtask 6. Balanced binary tree (9 points)
We will go through the removal order and maintain the sum in each subtree. This information
can be recalculated in O(log n) when considering the next vertex. Note that the optimal vertex for
nullification is adjacent to the path from the query vertex to the root. To answer a query, we will
consider all such vertices and obtain a solution in O(n log n).

• Subtask 7. O(n log n+ nh) (11 points)
We will act similarly to subtask 6. In addition to the sum in the subtrees, we will also maintain
two children with the maximum sum for each vertex. Recalculating such information when adding
a vertex and finding the subtree adjacent to the path to the root with the maximum sum can be
done in O(h).

• Subtask 8. Min-heap (14 points)
It can be noted that in this case, each subtree adjacent to the path from the query vertex to the
root either goes entirely to the query vertex in the removal order or entirely after it.

We will take advantage of this and pre-calculate the sizes of the subtrees, then we will traverse the
tree in depth. We will maintain the size of the optimal subtree adjacent to the path. When at the
next vertex, we will sort its children by value. Children with larger values will entirely go in the
removal order before children with smaller values. We will sequentially start a depth-first traversal
from them, updating the value of the optimal subtree with the size of the children before them.

As a result of such a traversal, we can also write down the removal order in linear time. We will
obtain a solution in O(n).

• Subtask 9. Full solution O(n log2 n) (18 points)
Similarly to subtask 6, we will go through the removal order and maintain sums in the subtrees.
For this, we will use the Heavy-Light Decomposition (HLD) data structure. When considering the
next vertex, we will add 1 on the path to the root. To answer a query, we will subtract ∞ on the
path to the root (to avoid considering subtrees containing the query vertex), take the maximum in
the tree, and then cancel the subtraction.

Problem D. Cute Subsequences
Let i1, . . . , ik be the indices that maximize the value for each chosen subsequence in the optimal answer.
Note that the answer itself is then equal to ai1 + . . .+ aik +max(i1, . . . , ik).

This means that if we fix max(i1, . . . , ik) = x, we want to maximize the sum of the k − 1 elements of
the array to the left of the x-th element. To do this, we can move left while maintaining a multiset that
stores the current k − 1 maximum elements and keeping track of their sum. Then the answer will be the
maximum over all x, x+ ax + sumx, where sumx is the sum of the k − 1 maximum elements to the left
of x.

Problem E. Strong Connectivity Strikes Back

Page 4 of 10



Subgroup 1

For each subset of edges, we will check if the Strongly Connected Components (SCCs) change when the
edges in it are reversed. A good subset does not contain subsets for which the SCCs do not change.
For each subset, we will check if it is good by enumerating all its subsets. Using Tarjan’s or Kosaraju’s
algorithm to find SCCs, we obtain a solution in O(3m + 2m ·m).

Subgroup 2

For each set, we need to check if it contains one of the "bad"subsets. We will use dynamic programming
over subsets:

is_good[S] = ¬can_reverse[S] ∧
∧
e∈S

is_good[S \ {e}]

In total, we obtain a solution in O(2m ·m).

Subgroups 3, 4 (Acyclic Graph)

Consider some edge e = (u, v). If there is no other path from u to v, e can be reversed, and the graph will
remain acyclic. Thus, e cannot be in a good set.

Now suppose there is another path from u to v. Then we can restore the direction of e from the directions
of the edges on this path, meaning the direction on e can be erased. The set of all such edges e is good.
This set is the only maximal one.

To check for the existence of a path that does not go through an edge, we remove the edge from the graph
and perform a breadth-first search. In total, we obtain a solution in O(m2).

Subgroup 5 (Hamiltonian Cycle)

We will call all edges that do not lie on the Hamiltonian cycle direct. Since reversing them does not violate
the strong connectivity of the graph, they cannot be in a good set.

Direct edges cover certain segments of the cycle. Consider the intersection of several such segments
(possibly disconnected, as the segments are cyclic). The claim is that all edges of the cycle that belong to
this intersection can be reversed, and the graph will remain strongly connected.

Thus, at least one edge of the cycle in the intersection of segments must not lie in a good set. Note that
if we can take another segment into our intersection and it decreases, we will obtain a stronger condition.
Moreover, the "minimal"intersections that cannot be reduced further do not intersect.

We will select one edge from each minimal intersection and take the set of all edges except the direct ones
and the selected ones. Why will it be good? Since the intersections are minimal, the edges in the graph
form chains between vertices of degree 2. Since there should be no sinks and sources in the final graph,
the directions on all edges of the chain are restored unambiguously.

The resulting set will be a maximal good one. The number of ways is the product of the sizes of the
minimal intersections.

Subgroup 6 (Strongly Connected Graph)

We generalize the idea of "minimal"sets that should not fully lie in a good one to the general case.

Consider an edge e = (u, v). Again, if removing it keeps the graph strongly connected, e cannot be in a
good set. Otherwise, reversing e would split the graph into several SCCs. We will denote the set of edges
belonging to the condensation as S(e) (e ∈ S(e)).

Page 5 of 10



Suppose we have reversed e and want to reverse some subset of edges so that the graph remains strongly
connected. We must reverse some subset S(e) to create a path from u to v.

u v
e

Note that if f ∈ S(e), then S(f) ⊆ S(e). If S(f) = S(e) for all f ∈ S(e), then the edges in S(e) form a
cycle in the condensation. We will call such S(e) necessary—this is equivalent to the "minimal"set from
the previous solution.

u v
e

f

Consider some set of edges that can be reversed while keeping the graph strongly connected. Let e be an
edge from this set with the minimal S(e). Then S(e) is necessary. Indeed, suppose it is not, then there
exists an edge f ∈ S(e) such that there is a path from v to u in the condensation graph that does not go
through f . Then S(f) ⊂ S(e); a contradiction.

Since S(e) forms a cycle, S(e) lies entirely within the considered set. Therefore, any set of edges that can
be reversed without violating strong connectivity contains some necessary set.

Moreover, we can reverse S(e) itself to keep the graph strongly connected. Thus, A is good ⇐⇒ A does
not contain any necessary S(e).

To achieve this, we need to not take one edge from each necessary set into A. Since they do not intersect,
this can be done in any way. The maximal good set consists of all edges except those that do not affect
strong connectivity and those selected from necessary sets. The number of ways is the product of the sizes
of the necessary sets.

Complete Solution

We will solve the problem separately for each SCC and for the condensation graph. In the condensation
graph, there may be several edges connecting two SCCs; we must not take any one of them into the good
set. We will multiply the answer by their count.

The final solution works in O(m2).

Partial Score Solution

From the complete solution, an interesting fact follows: any good set lies within some maximal good set.
This allows us to write the following greedy solution:

Suppose we have already chosen some good set. Now we want to understand if we can add another edge
to it. Under what condition can we not do this? When it is possible to reverse our edge and some other
subset of already erased edges while maintaining strong connectivity.

As mentioned above, if after reversing our edge (u, v) there is no longer a path from u to v, we need to
reverse some edges from the already taken set to create this path. We can check if this is possible by

Page 6 of 10



searching for a path from u to v in the graph where we have added the reversed edges for each erased
edge.

If such a path does not exist, then the edge (u, v) can be erased. Why, if such a path exists, can we not
do this? It is claimed that after reversing the edge (u, v) and the edges on the found path, the graph will
remain strongly connected. Indeed, we obtained a cycle from this path and the reversed edge (v, u). For
all edges that we reversed on this path, reachability between the ends of the edge remained, as all vertices
on the cycle are reachable from each other.

By considering all edges of the graph in any order, we will construct some maximal good set.

Problem F. Best Runner
First, let’s analyze the subgroups where the main idea from the general solution is not used:

Subgroup 2: The first runner will always win: he must move one lane to the left after each lane (as long
as this is possible). This way, he will run the most lanes, as he will have run on the shortest lanes.

Subgroup 3: This can be solved using dynamic programming. dp[i][j] (where i is the current lane of the
runner, and j is the remaining time) equals the maximum number of lanes that can be run starting from
such a situation.

Subgroup 5: The runner who starts on the lane with the minimum length always wins, as he can run
the maximum number of times on the shortest lane.

For the other subgroups, we need to understand what the optimal route of the runner will look like. Let’s
say he starts on lane i.

• He must finish on the shortest lane he has been on (let’s denote it as j). If he stayed on the shortest
lane and ran on it until the end of the time, he would have run at least as many lanes as in any
other scenario.

• He must also transition from i to j as quickly as possible, and then only run on j. This way, he will
run the maximum number of lanes among all scenarios.

Let’s say we have a runner starting on lane i and ending on lane j. We define the number of lanes he will
run. Without loss of generality, let i < j. Then he will spend ai + ai+1 + . . .+ aj−1 time to reach lane j,
and then he will run on j for the remaining time. Thus, he will run j − i + bT−(ai+ai+1+...+aj−1)

aj
c lanes

(if the time from lane i to lane j does not exceed T ). If we maintain prefix sums of the array a, we can
compute the number of lanes in O(1).

This is enough to solve subgroup 1: for each starting position, iterate through all ending positions and
find the maximum number of lanes.

Subgroup 4: here we need to iterate only through those lanes that are strictly shorter than all lanes
between the starting lane and it as ending positions. Since the lengths of the lanes do not exceed 20, for
each starting position, we will consider no more than 20 ending lanes to the left and right. To quickly
find the nearest lane to the left (or right) that is shorter than the current one, we can precompute them
in advance.

Subgroup 6: we just need to apply a small trick. We will instead find for each ending position j the
runner who will run the maximum number of lanes and finish on lane j. It can be shown that this will
either be the nearest runner to the left of the lane, or the nearest runner to the right (or a runner starting
on this lane, if such exists) — other runners will take more time to reach j (if j is the optimal ending
position). Thus, we need to iterate through no more than 2 starting lanes for each ending lane.

Problem G. Card Flip
Let there be k cards left on the table, all of which are single-sided or flipped double-sided. Then players
can only perform the first action, and thus the winner is determined unambiguously. If k is odd, the first
player wins; otherwise, the second player wins.

Page 7 of 10



Now suppose there are single-sided and flipped cards on the table, as well as one unflipped double-sided
card, which the current player will act upon. It is noted that in such a position, the current player wins.
Indeed, the current player can choose the move that will leave an even number of cards, meaning the
current player can make a move that will guarantee his victory. Thus, the player who can take the last
double-sided card wins.

The previous observation allows us to simplify the problem. Let x be the largest number on the front side
of the double-sided cards. The player who plays with card x wins. Then:

1. We can remove all single-sided cards with numbers greater than x. Their presence does not affect
which player will act with card x.

2. We can replace all double-sided cards that have a number on the back side greater than x with
single-sided cards. Note that regardless of whether this card is removed or flipped, it will not affect
which player will take card x. Thus, we can consider it simply as a single-sided card with the number
on the front side of the original double-sided card.

3. After the two previous changes, when the turn reaches card x, no other cards will remain, meaning
the current player will definitely discard it to ensure his victory. Therefore, we can replace this card
with a single-sided card with the number x.

This simplification of the problem does not change the winner of the game, but the number of double-sided
cards on the table decreases by at least 1.

Since the number of double-sided cards decreases after each simplification, applying this operation a finite
number of times will yield a position containing only single-sided cards. Then, using the first observation,
we can determine the winner of this game.

It is noted that to simplify the problem, it is necessary to iterate through all cards, i.e. perform O(n+m)
actions. Since after this the number of double-sided cards will decrease by at least 1, the total number of
simplifications will not exceed O(n). Thus, we have obtained a solution with a complexity of O(n(n+m)).

Let’s try to speed up the previous solution. Instead of honestly performing the next simplification, we will
simply search for the double-sided card that will be the last in the new game. It is noted that this card
has the following property: the number on its back side is less than the current x, and among such cards,
it has the largest number on the front side. Thus, by sorting the double-sided cards by number on the
front side in O(n log(n)), we can iterate through them in decreasing order of number, and at the moment
when the condition on the number on the back side is met, we will update the value of x, thus moving
to the next card. By performing this action, we will find the number x — the number on the front side
of the double-sided card that will be the last in the last simplification. By looking at the parity of the
number of double-sided cards with numbers not greater than x and single-sided cards with numbers less
than x, we will determine the winner of the game. The complexity of this solution is O(n log(n) + m).
Using count sort, we can achieve a complexity of O(n+m), but this was not required in this problem.

Problem H. Order Statistics
In subtask 1, it is sufficient to model the process described in the statement in (mn log n) time by sorting
the array m times and decreasing the last k elements by 1.

In subtasks 2-4, k = 1, meaning that in each of the m operations, the maximum element in the array is
decreased by 1. Let’s assume that the largest element in the array after m operations is x. Then we have

m ≤ max(a1 − x, 0) + . . .+max(an − x, 0) = T (x)

It is also easy to notice that the largest value in the array after m operations is equal to the smallest x
that satisfies this condition. We will find this x using binary search. After T (x) operations, all elements
of the array that were greater than x will become equal to x, while the others will remain unchanged. We
know that the maximum in the array will not be less than this, so the remaining m−T (x) operations will

Page 8 of 10



decrease the elements equal to x. We know the number of remaining operations, so we can simply decrease
any m − T (x) elements equal to x by 1 to obtain the final array. This solution works in O(n logmax ai)
time and passes subtask 2. To pass subtasks 3 and 4, we need to learn how to quickly compute the value
of T (x) for a given x. In subtask 3, there are no changes, so it is sufficient to use the precomputed prefix
sums on the sorted array a, while in subtask 4, to maintain changes, we can use a segment tree, a Fenwick
tree, or a Cartesian tree, resulting in a final asymptotic complexity of O(n logm log n).

In subtask 5, k = 2. We will sort the array a. While an is greater than the maximum of a1, a2, . . . , an−1,
the problem is equivalent to the case of k = 1, since at each step an and the maximum of a1, a2, . . . , an−1
are decreased. We will find, using binary search and the solution for k = 1, the moment when an becomes
equal to the maximum of the prefix a1, a2, . . . , an−1. This part of the solution works in O(n log2C) time.
We will sort the array again, now an = an−1. From this moment on, the sorted array after each operation
will look as follows: some unchanged prefix of the array, followed by a suffix consisting of numbers x or
x + 1 for some x, with the suffix length being at least 2. For simplicity, let’s say that the suffix length
is even; the odd case is handled more or less similarly. If L is the length of the suffix, and the minimum
value in the suffix is greater than the maximum in the prefix, then in L/2 operations, all elements in the
suffix will be decreased by 1. At the moment when x becomes equal to the maximum in the prefix, the
length of the suffix will increase by 1. The total number of suffix expansions will not exceed n. If we handle
all expansions carefully, this part of the solution will work in O(n) time. Thus, we obtain a solution in
O(n log2C).

In subtask 6, m ≤ 106. We will learn to process one operation in O(log n) time while keeping the array
sorted. Let’s assume the array is sorted before the operation, and the number x is at position n− k + 1.
Let the number of elements in the array greater than x be k1. Then in this operation, all elements of the
array greater than x, as well as k−k1 elements equal to x, will be decreased. To maintain the sorted order
of the array, we need to choose k−k1 of the elements equal to x that are the leftmost in the array. We can
find the number of elements greater than x, the first element not less than x, and decrease all elements in
the segment by 1 using a segment tree in O(log n) time. In total, we obtain a solution in O(m log n) time.

In the remaining subtasks, the main idea of the complete solution is used in one way or another.

The main idea: let’s imagine that in each operation we decrease not the k largest elements, but any k
elements of our choice. We will also assume that the operations are applied in such a way as to maintain
the sorted order of the array (note that this requirement does not restrict the operations if we consider
them as operations on an unordered set of elements of the array). Let b be the array obtained by applying
the operation from the statement m times, and c be the array obtained by applying any sequence of m
operations, where each operation decreases k arbitrary elements by 1. We will understand how the array
b, which we want to find, stands out among all possible arrays c. Let’s assume that the arrays b and
c are sorted. Then it is claimed that b1 + . . . + bi ≥ c1 + . . . + ci for all i from 1 to n, meaning that
the operations from the statement "maximize"the resulting array in some sense. It also follows that the
array b1, b2 . . . , bn is the lexicographically maximum array that can be obtained by such operations. Proof:
consider a sequence of operations that leads to the maximum possible sum c1 + . . .+ ct. Let’s look at the
last bad operation (the one that decreased not the k largest elements by 1). Then if elements i, j are such
that before this operation ai < aj (i < j, since the operations preserve the order of elements), and the
i-th element was decreased by 1, while the j-th was not. Let’s assume that after applying all operations,
the array became equal to b1, b2 . . . , bn. If bi < bj , swapping the i-th and j-th elements in the considered
bad operation will yield a final value that is at least b1 + b2 + . . . + bt. If bi = bj , then after the bad
operation, there was at least one operation that decreased aj and did not decrease ai. Swapping ai and
aj in both operations will yield the same array b, but will increase the sum of the elements that were
decreased by 1 in the bad operation. The number of operations and the sum of elements are finite, so this
process will eventually end, and we will obtain a sequence consisting of good operations that maximizes
the sum c1 + . . .+ ct.

We have understood that b maximizes the prefix sums among all arrays c obtained by m operations of
subtracting 1 from k elements. The next task allows us to easily describe all suitable arrays c, for which
we will search for this maximum.

Page 9 of 10



Let’s recall a classic problem: how to check if in the array d1, d2, . . . , dn ≥ 0 we can decrease k different
(but not necessarily distinct in value) elements m times, so that all elements of the array remain non-
negative. The answer: this is possible if and only if min(d1,m)+ . . .+min(dn,m) ≥ mk. The proof is left
as an exercise.

Using the described solution to the classic problem, we can check whether it is possible to obtain from a
an array c after performing m operations such that ci ≥ bi for all i. Then, by performing binary search
sequentially on b1, then on b2 with fixed b1, and so on, we will find the maximum lexicographically array
that can be obtained from a in m operations, which will indeed be the answer. Depending on the efficiency
of the implementation, we can achieve a solution in O(n2 logm), O(n2), O(n logm), or O(n) time, passing
subtasks 7 and possibly 8.

We will learn to calculate the maximum possible prefix sum a1+a2+ . . .+ai that can be obtained after m
operations. Let’s assume that we have decreased the element ai to x. Then the elements a1, a2, . . . , ai−1
must be decreased at least to x, and the elements ai+1, . . . , an can be decreased no lower than x, because
the order of elements in the array must be preserved. Let’s consider two quantities f(x) — the minimum
number by which we must decrease the elements in the prefix up to the i-th, and g(x) — the maximum
number by which we can decrease the elements in the suffix starting from the (i + 1)-th, in order to
maintain the non-decreasing order of elements in the array. Since in total, after m operations, all elements
will be decreased by mk, the total decrease in the prefix will be at least max(f(x),mk − g(x)). It is easy
to see that this estimate is achievable, so in the case when we decrease ai to x, the maximum possible
prefix sum is a1 + a2 + . . . + ai − max(f(x),mk − g(x)). We can find the maximum of such a function
over x using binary search, as the function f(x) is non-increasing, while the function mk − g(x) is non-
decreasing. Without queries to change the functions f(x) and g(x), we can compute them using prefix
sums on the sorted array, which passes subtasks 9 and 10. To handle update queries, we can use a segment
tree, a Fenwick tree, or a Cartesian tree, which passes subtask 11 and, depending on the efficiency of the
implementation, subtask 12. The time complexity of the solution is O(n logm log n.

Page 10 of 10


